Nanotech

nanotech
Block-Scaffolds for Bone Regeneration using Nanoclay-Polycaprolactone Scaffolds with Supplements (RFT-533)

Scientists at NDSU have developed a flexible, modular, bone scaffold for filling large bone gaps and accelerating bone growth with various additives, such as nutrients, cytokines, therapeutics and minerals incorporated into the scaffold.  The scaffold is made of a clay and a polymer.

Silicon Quantum Dots can Be Manufactured within Targeted Size Range, Can be Modified to Provide Sensor Functions and to Prevent Clumping and Clinging (RFT-501)

Scientists at NDSU have developed a method to produce functionalized silicon quantum dots (SQDs) with sensor capabilities.

Roll-to-Roll Synthesis of Silicon Thin Films from Liquid Silanes (RFT-447)

Silicon thin films are fundamental in solar and microelectronic industries, and are presently obtained using expensive low-pressure plasma enhanced chemical vapor deposition (PECVD) using gaseous silanes despite of its low precursor utilization efficiency. Instability and low vapor-pressure of liquid hydrosilanes have limited their use in the semiconductor industries for longtime. Researchers at NDSU have developed a process to synthesis silicon thin films from liquid hydrosilane (Si6H12) at ambient pressure in a roll-to-roll method using atmospheric pressure aerosol assisted chemical vapor deposition (AA-APCVD) that has higher deposition rates compared to the state-of-the-art PECVD.  

Removal and Recovery of Phosphate from Water Bodies and Reuse as a Fertilizer (RFT-419)

Scientists at NDSU have developed biodegradable iron-containing alginate beads that remove phosphorus from water, and can then be beneficially reused to provide Phosphate fertilization. As a result, this dual-use technology can be used to clean water bodies that are eutrophic due to excess phosphorous, then use the phosphorous for fertilization in agricultural, nursery, and greenhouse settings where phosphorus is a limiting nutrient.

Vegetable Oil-Based Polymers for Nanoparticle Surface Modification (RFT-413)

The extremely high surface area of nanoparticles provides many advantages over conventional particles with dimensions in the micron scale. For a variety of applications, it is necessary to suspend the nanoparticles in a liquid medium. Researchers at NDSU have developed a new plant-oil-based polymer technology focused on the application of nanoparticle suspension in water.

Electrospinning Process for Continuous High-Volume Silicon Micro- and Nano-Wire Production (RFT-311)

Scientists at North Dakota State University (NDSU) have developed a process for continuous high-volume production of silicon micro- and nano-wires based on electrospinning. The technology is based on the ability to use liquid silane as a starting material, so the length of the wires is essentially unlimited. The wires can be produced with a variety of polymers, metal particles, and silane variations to generate a range of properties and capabilities. Potential applications include composite materials, electronic devices, sensors, photodetectors, batteries, ultracapacitors, and photosensitive substrates.